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Abstract: This study was conducted from a perspective that adopts a broad vision of mathematical
talent, defined as the potential that a subject manifests when confronting certain types of tasks,
in a successful way, that generate creative mathematical activity. To analyse this, our study proposes
a Praxeological Model of Mathematical Talent based on the Anthropological Theory of Didactics
and the notion of mathematical creativity, which defines four technological functions: (1) producing
new techniques; (2) optimizing those techniques (3); considering tasks from diverse angles; and
(4) adapting techniques. Using this model, this study analyses the creative mathematical activity
of students aged 10–12 years displayed as they sought to solve a series of infinite succession tasks
proposed to encourage the construction of generalization processes. The setting is a Mathematics
Club (a talent-promoting institution). The evaluation of results shows that the Praxeological
Model of Mathematical Talent allows the emergence and analysis of mathematical creativity and,
therefore, encourages the development of mathematical talent.
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1. Introduction

For several decades, diverse models and definitions of talent have been proposed in the literature.
Singer, Sheffield, Freiman and Brandl point out that most of those models and definitions describe
talent as the potential to successfully perform a certain activity, and indicate that while a broad range of
models of mathematical talent exist, they are still limited [1]. Research devoted specifically to defining
mathematical talent emphasize three areas of study: (1) the characteristics of subjects with talent [2–4];
(2) differences in the characteristics of “talented” vs. “good” students [5,6]; and (3) perspectives on
creativity as a fundamental element of talent [7,8].

Generally-speaking, however, mathematical talent has been defined on the basis of the subjects’
abilities. Krutetskii specified that:

Mathematical giftedness is the name we shall give to a unique aggregate of mathematical
abilities that opens up the possibility of successful performance in mathematical activity (or
with school children in mind, the possibility of a creative mastery of the subject). [9] (p. 77)

This perspective on talent stresses the importance of creative dominion in mathematical activity.
In contrast to other postures that, as Leikin points out, associate mathematical talent with the innate
characteristics of certain individuals, our work seeks to demonstrate that talent is not a “given”
quality, but can be developed under certain circumstances and with adequate accompaniment [10,11].
This leads to the following definition of potential talent:
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Talent that has not yet been developed or evidenced; that is, the potential exists to develop
and demonstrate it, but due to one or more factors have been unable to manifest it in
action schemes. [12] (p. 27, translation by the author)

This definition underscores a transcendental aspect of talent; namely, that “it is developable” [11,13],
though it is not clear how this development can be achieved. Studies have revealed certain characteristics
strongly-related to talent, such as creativity, which is defined as a person’s capacity to produce new ideas,
focuses or actions and then manifest them by moving from thinking to reality [14]. At the professional
level, mathematical talent is understood as outstanding performance that leads to discoveries and
so is closely related to mathematical creativity [10]. Research has demonstrated that developing
creative thinking in mathematics is closely connected to the progress of society [15]. In schools,
then, mathematical creativity should be included when developing mathematical talent to prepare
students to be innovative and reflexive leaders in diverse fields of knowledge that can promote new
methods and atypical perspectives in the evolution of science [1].

Leikin sustains that research on the education of subjects with talent and creativity should
be oriented by two interrelated aspects: one theoretical, the other applied [16]. The former
seeks to understand the nature of creativity and mathematical talent, while the second seeks to
foster mathematical creativity and develop mathematical talent. This requires, on the one hand,
confronting open, challenging, novel (non-routine) problems [2,4,9,17–20] and tasks that lead students
to problem posing [20], and, on the other, determining the conditions necessary to develop creative
thinking, such as forging connections with previously-learned material [10], taking distinct paths to
solve the same task [8], or discovering the multiple solutions that a task may admit [21]. The latter
entail the development of flexibility, a trait long recognized as an essential component of mathematical
talent [2,6,8,9,22–26]. These elements are related to the medium of students’ development and their
teachers’ or tutors’ didactic and disciplinary knowledge [17,27].

Two current issues stand out on how to nurture talent: differentiated attention, which entails
characterizing and identifying subjects with talent [28,29], and an inclusive focus that develops didactic
proposals for heterogeneous groups [13,30–33].

These antecedents lead to the following affirmations: (1) mathematical creativity is closely-related
to talent; (2) talent is developable; and (3) theoretical models need to be produced to understand the
conditions that will make such development possible. As a result, the research questions that guided
our study were:

What type of activities foster developing creativity and, hence, mathematical talent?
What theoretical model allows us to best analyse creative mathematical activity?
What institutional conditions propel the development of creative mathematical activity?

To examine these issues, this work established relations between elements of the Anthropological
Theory of Didactics (ATD) and the concept of mathematical creativity that led this study to propose
a theoretical approach called the Praxeological Model of Mathematical Talent (PMMT). This instrument
is elucidated in the following section.

2. Theoretical Framework

This section first presents elements of the ATD, an approach that analyses the institutional
dimension of human activity [34]. Second, it clarifies the notion of creativity [8,35–37]. These are the
basic elements this study utilized to propose a theoretical model of mathematical talent.

2.1. Definitions: Institution, Praxeology, and Levels of Complexity

An institution is defined as “a stable social organization that makes it possible to efficaciously
confront problematic tasks thanks to the material and intellectual resources it provides to subjects,
and the restrictions defined for executing those tasks” [38] (p. 85, translation by the author). In
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this sense, a program of attention to talent (e.g., a science fair or Olympic club) can be considered
institutions because they offer subjects conditions and resources to confront problems that are framed
as elements of human activity. The ATD analyses this using the four components of praxeology, that is,
task type, T; technique, τ; technology, θ; and theory, Θ. Task type (T) refers to “what is done”; technique
(τ) is “how it is done”; technologies (θ) are “the discourses that produce, explain, and validate the
techniques”; and theory (Θ) refers to “broader discourses that produce, explain, validate, and justify
the technologies” [39]. Praxeologies have different levels of complexity. The first, and most elemental,
is called “punctual” [T, τ,θ, Θ], which is defined as having a task type, T; a technique, τ; a technology,θ;
and a theory, Θ. The second is called “local”, and includes various punctual praxeologies [Ti, τi,θ, Θ],
but the same technology, θ; for example, finding the joint solution of a system of lineal equations using
only the Gauss-Jordan technique that corresponds to a punctual praxeology, while considering all
available techniques (equalization, elimination, substitution, iterative methods, etc.) to find the joint
solution of that system would constitute a local praxeology. In this case, the regional praxeology would
be Lineal Algebra, the global praxeology is Algebra per se, and the disciplinary praxeology, the field of
mathematics. One postulate of the ATD is that producing mathematical activity entails constructing,
or reconstructing, at least one local praxeology [39], so any proposal for developing mathematical
talent must include this element of praxeology; that is, a praxeology in which tasks can be performed
using techniques produced by the same mathematical technology.

In order to identify the characteristics of creative mathematical praxeologies—that is, those in which
creativity plays a specific role—the following section analyses the notion of mathematical creativity.

2.2. Mathematical Creativity

In Mathematical Education, the characterization and identification of creativity is often related to
four components: fluency, flexibility, originality [8,36,37], and elaboration [35]. ‘Creativity’ is a term
widely used to refer to the capacity to produce new ideas, focuses, or actions, and then manifest
them by transiting from thought to reality [14]. Sriraman, one of the author/editors of the book,
Creativity and Giftedness, proposes a significant differentiation between creativity at the professional
and school levels [40]. There, professional mathematical creativity is defined as the “(a) the ability
to produce original work that significantly extends the body of knowledge, and/or (b) the ability to
open avenues of new questions for other mathematicians” (p. 23), while school-level mathematical
creativity refers to:

“(a) the process that results in unusual (novel) and/or insightful solution(s) to a given problem
or analogous problems, and/or (b) the formulation of new questions and/or possibilities that
allow an old problem to be regarded from a new angle requiring imagination”. (p. 24)

Our approach adopts the second conceptualization to define the theoretical model of mathematical
talent that is described in detail in the next section.

2.3. Praxeological Model of Mathematical Talent (PMMT)

The PMMT considers the aforementioned, classic components of praxeology: task type,
T; technique, τ; technology, θ; and theory, Θ; but distinguishes two elements of technology,
one mathematical, the other creative. This study associates the technological mathematical component,
θm, with what other conceptual frameworks classify as mathematical abilities (reasoning mathematically,
economizing thought, expressing logical and sequential thought, abstraction, and generalization,
among others); elements associated mainly with mathematical institutions. The creative technological
component θc, in contrast, relates to the production of unique, unusual, flexible or perspicacious
techniques that integrate elements from experiences in various institutions, such as family,
school, the street, and clubs, among others.

The PMMT is represented as a creative praxeology in which Pc = [T, τ,θm
c , Θ]. In order to analyse

the creative mathematical activity, in this model, the technology (θm
c ) is divided by two components:
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The mathematical component (θm) corresponds to the mathematical technology from the classic model
[T, τ,θ, Θ] sustained by mathematical theory, while the second (θc) reflects creativity understood
through the following four technological functions:

F1. Producing unique techniques: Faced with a novel task, distinct steps are produced without
following a specific routine. Exploring the task presented in relation to that which is already known
generates new ideas and leads to constructing new techniques, all guided by the assignment.
F2. Optimizing the technique: Evaluating a range of possible routes that allow performance of the
task, then choosing the “optimal” one as a function of the number of steps and mathematical
knowledge involved. This may mean constructing a general rule (verbal, iconic, or alphanumeric)
instead of using a series of drawings to determine the properties of an unknown stage in
a figural sequence.
F3. Considering tasks from diverse angles: This means analysing the task without restricting it to
a certain domain (such as algebra, geometry, discrete mathematics, etc.), or discipline (physics,
chemistry, visual arts, etc.), either by producing steps that permit task execution (recognizing the
knowledge that motivated the subject to follow a certain path or to change direction), or generating
diverse techniques to perform the same task.
F4. Adapting a technique: This entails identifying the functioning, scope, and limits of a technique
produced in order to implement it on another task after certain modifications. First, the technique
must be validated (that is, verifying that its steps make it possible to do what is proposed); second,
it needs to be adapted and, perhaps, improved while solving another task.

These functions are closely interrelated during the solving process; for example, the function of
producing unique techniques (F1) may emerge when adapting a technique (F4), while considering tasks
from diverse angles (F3) may generate unique techniques (F1). Hence, these functions do not follow
a fixed order during their development, but are assumed as key elements that permit the analysis of
creative mathematical activity.

2.4. Implementing the Praxeological Model Pc = [T, τ,θm
c , Θ]

This investigation examines a local-level praxeology called “infinite successions”. The task type
assigned, T, is “to determine the nth stage of an infinite succession”. The technique, τ, consists in:

1. Studying the first cases or stages and determining the relation between ai and i = 1, 2, . . . , n.
2. Constructing a general rule for the nth stage.
3. Implementing the rule constructed in (2) for specific close and distant stages of the succession

(n = 10, n = 20, n = 100).

The creative technology, θc, is associated with the four aforementioned technological functions,
while the mathematical technology, θm, is determined by the process of recursive and/or
algebraic generalization:

Recursive generalization appears when coincidences are observed in the base stages (perceptual
field). On this basis, a relation of dependence is considered between an and an+1. Later, a rule is
constructed for the stage an+1 based on the stage an (inferential field). This makes it possible to
determine “close” values [41–44].

Algebraic generalization appears when a verbal rule or expression is constructed on the basis of the
stages of the perceptual field or recursive rule that determines a relation of dependence between any
stage n and the stage of the sequence an (with no need to obtain the previous term, an−1). This permits
the determination of both “close” and “distant” values [41–44].

Generalization is taken as the mathematical technology, θm, because it is determinant in
constructing a general rule for a succession, be it figural, numeric, or figural with a tabular aid.
In other praxeologies, technology may be associated with logical-sequential thought or abstraction.

Finally, the theory, Θ, in this model is defined by Combinatory Theory.
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3. The Study

3.1. The Setting and Characteristics of the Institution

This is a qualitative investigation that adopted a case study methodology to analyse creative
mathematical activity at an institution that promotes mathematical talent. The institution is called
the Math Club (MC), and it was formed with the aim of implementing a series of tasks of the same
type—local praxeology—that together enable creative mathematical activity.

Institution, the MC. The MC was conceived and constituted by one of the authors of this article
with the support of the government of Baja California (México) during the development of her doctoral
thesis. The participants were children from 15 public schools in the state, their parents, and an expert in
mathematical didactics. The MC held 10 weekly 90-min sessions that were videotaped and transcribed
for a deeper analysis of the creative mathematical activity that was potentiated using the PMMT
proposed herein.

Students. The students were selected by applying a written test that presented four math problems.
In addition to the results of the test, the authors took into account the recommendations of math
teachers regarding the interest of different students in participating in the MC. Table 1 summarizes the
characteristics of the group.

Table 1. Characteristics of the participants in the Math Club.

5th Grade 6th Grade

Sex 10 Years 11 Years 12 Years Total

Female 2 8 2 12
Male 3 8 3 14
Total 5 16 5 26

The role of the instructor. The instructor’s participation consisted of constructing the didactic
proposal presented below, after considering previously-analysed didactic variables that were
transformed according to the students’ needs. Throughout the study, the instructor emphasized
that all ideas, first explorations, and embryos of techniques were important, and motivated the students
to explore cases, explain their techniques, and then determine their validity. The instructor monitored
the students’ work, guided group meetings, and promoted the collective validation or refutation of
the different techniques proposed. The instructor’s participation was indispensable in establishing
a climate of respect and collective analysis.

The role of parents. Though the parents only participated actively in the first (presentation of
the MC) and last sessions (when parents and children played a mathematical game called “double
domino”), their role in accompanying their children and ensuring their regular participation in the MC
was fundamental to the success of the study.

The inputs obtained as the basis for analysing the participants’ creative mathematical activity
consisted of the following: (1) their worksheets; and (2) transcriptions of selected “episodes” from the
videotaped sessions. Episodes are defined as “work intervals” in which pairs of students sought to
construct or present the mathematical and creative technological elements that were analysed using
the PMMT, as shown in the Results section.

3.2. Didactic Design of the MC

The personal characteristics of a subject such as good memory, commitment to the task,
and a positive attitude towards mathematics, all increase the possibilities of enhancing mathematical
talent. One way to ensure that these characteristics participate in developing such talent is to have
students confront a didactic design that consists of a set of challenging, interrelated mathematics tasks
in an institutional setting that propitiates the development of creativity. The present study proposed
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a didactic design based on an “infinite successions” praxeology with six challenging problem situations
adapted from earlier studies of mathematical talent. Table 2 briefly describes the tasks included in the
six situations.

Table 2. Tasks presented in all the MC sessions.

Problem Situation Tasks

1. Sierpiński’s triangle

Task 1.1: Determine the change in the number of triangles while
building Sierpiński’s triangle.
Task 1.2: Determine changes in the area while building Sierpiński’s
triangle.
Task 1.3: Determine changes of the perimeter while building Sierpiński’s
triangle.

2. Origami cubes

Task 2.1: Determine the number of cubes required to construct any stage
of the sequence (different sequences of origami cubes were presented).
Task 2.2: Construct three stages using the origami cubes following a
pattern.

3. Tables and chairs

Task 3.1: Determine the number of chairs that can be arranged at any
number of tables.
Task 3.2: Determine the number of squares required to build any stage
of the sequence.
Task 3.3: Determine the number of shaded squares required to construct
any image.

4. Intersections and regions

Task 4.1: Determine the number of intersections formed on a plane
when any number of non-parallel lines are placed but only two lines can
form an intersection.
Task 4.2: Determine the number of regions formed on a plane when any
number of non-parallel lines are placed but only two lines can form an
intersection.

5. Tower of Hanoi Task 5.1: Determine the minimum number of movements with any
number of disks.

6. Folding paper

Task 6.1: Determine the total thickness of the folded sheet for any
number of folds.
Task 6.2: Determine the surface area of the sheet for any number of folds.
Task 6.3: Determine the perimeter of the surface of the sheet for any
number of folds.

The tasks defined for each situation (Table 2) permitted constructing lineal, quadratic, or
exponential general rules. Task 6.3 has the most challenging algebraic generalization rule:
an = 32/

(
2n−1
)

for all n ∈ N. It is important to clarify that this study did not expect the students to
construct expressions with alphanumeric algebraic syntaxes, but generalizations of algebraic type,
understood from the perspective of Radford as factual, contextual, or symbolic [40]. Though all six
situations shared the goal of reaching an algebraic expression, certain specific elements were not
common: for example, the use of didactic material (situations 2, 4, 5), problem posing (situation 2),
and managing concepts foreign to traditional instruction (situation 1).

These problem situations were organized with the expectation that they would foster the
emergence of a creative component that could be analysed using the four technological functions
outlined above. As elucidated below, each situation was accompanied by several tasks designed
to generate a mathematical activity. While the analysis of the mathematical activity generated by
a specific task may not necessarily discern all four creative functions, together these tasks fomented
creative mathematical activity and, hence, the development of mathematical talent.

The next section focuses on situations 2 and 4, which were used in this study to evidence the
creative component of the students’ activity and how it can be analysed using the PMMT.
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4. Results

The results presented in this section reflect our analysis of the mathematical activity of three
pairs of students. This study chose situations 2, “Origami Cubes”, and 4, “Intersections and Regions”,
which were developed in sessions 2 and 4–5, respectively, because they allowed the authors to analyse
the evolution of creative mathematical activity using the PMMT model.

4.1. Problem Situation 2: Origami Cubes

This problem included two tasks:

• Task 2.1: Determine the number of cubes required to construct any stage of the sequence (different
sequences of origami cubes were presented).

• Task 2.2: Construct three stages using the origami cubes following a pattern.

Task 2.1 consisted in determining, based on the first three stages of a sequence, a general rule that
would define all the stages of the sequence. Task 2.2 involved building, with tangible materials (origami
cubes), three stages of any sequence. To perform Task 2.1, the students were shown four different
construction sequences of the cubes, some with lineal generalization rules, others with quadratic rules.
One of the quadratic rules is shown below (Figure 1).
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Figure 1. Construction of origami cubes presented to the students of the MC.

The technique required to solve this task entails constructing a relation between the number of
cubes in each figure generated for each term, following three main steps: (1) studying the first three
stages to construct an initial rule that determines a relation between the number of cubes and the
stage of the sequence (Figure 2); (2) constructing a rule for the nth stage (Table 3); and (3) verifying
the general rule for the stage n + 1, which can be demonstrated using the induction principle and,
for these students, proving that rule for different stages.

Table 3. Arrangements of the cubes required to construct the nth stage of situation 2.

Term Combination
Pink/Orange

Combination
Pink/Blue

Total
Cubes

Increase of
Cubes between

Stages

1 2 2 4
2 2 6 8 +4
3 2 12 14 +6
4 2 20 22 +8
...

...
...

...
...

n 2 n(n + 1) n(n + 1) + 2 +2n

The cubes and the table containing the combinations of colours and totals (Figure 2) constitute
two ostensives, that is, palpable records according to Bosch and Chevallard [45]. They allow the
development of the technique and technology. Specifically, the table (Figure 2) allowed students to
“decompose” [43] (p. 66) the task down into sub-tasks and so control the technique.
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Figure 2. Table to determine the number of cubes according to the combinations of colours.

Tables 4–6 show the techniques and technologies produced by the three pairs of students that
were representative and contrasting in terms of the mathematical and creative technologies in play.

Table 4. Pair A’s techniques and technologies related to Task 2.1.

Technique Technologies θm and θC

Step 1. Determine that the first combination (orange/pink)
remains unchanged, and place the number 2 in the first
combination up to stage 100 (Figure 2).
Step 2. Count the cubes in the second combination
(blue/pink) and write the numbers 2, 6 and 12, respectively,
in the first three cells.
Step 3. Identify a pattern based on the stages given and
make drawings with squares to represent the cubes for
stages 4, 5 and 6 in the two combinations (Figure 3).
Step 4: Based on the drawing of stage 6, they made
drawings of the increments for n = 7, n = 8, n = 9 and n = 10
(Figure 3). Next they counted and made the sums.
Step 5: To obtain the result for stage 100, they multiplied the
number of cubes of stage 10 by 10. The instructor asked
them to prove this ‘rule of 3’ for stage 9 based on stage 3.
After doing so, they abandoned this technique. Later, they
returned to their attempt to count the number of cubes
using drawings.

θ1 : On the first three stages, they explored other
close ones using drawings, but could not determine a
recursive rule per se.
θ1 : They optimized the technique by changing from
drawing the complete figure to drawings that show
only the increments (F2).
θ2 : They tried to optimize (F2) by adapting a school
technique called ‘the rule of 3’ to determine case 100,
but failed to solve the task.
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Figure 3. Pair A’s drawings to solve Task 2.1.

Table 4 shows a first approximation towards the creative mathematical activity defined by F2
and F4. To determine the stage n = 100, pair A optimized the drawing technique of each figure by
considering only the increments. They then sought to optimize utilizing the school technique called
the rule of 3. Their return to the tangible material led the authors to suppose that they tried to obey the
rules that govern the institution of the CM. Their adherence to the physical material of the cubes and
drawings did not allow them to reach a rule of recursive generalization. The development of creativity
is associated with the task type and the implicit rules established to execute it, as shown below.
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In what follows (Table 5), the study presents the technique used by pair B and its
associated technologies.

Table 5. Pair B’s techniques and technologies related to Task 2.1.

Technique Technologies θm and θC

Step 1. Same as for pair A.
Step 2. Same as for pair A.
Step 3. Based on the initial stages of the second
combination, they determined that stage 1 has 2 cubes,
stage 2 has 2 + 4 = 6 cubes, and stage 3 has 2 + 4 + 6 = 12
cubes. They then departed from the material and made a
sum to determine the number of cubes in stage 4:
2 + 4 + 6 + 8 = 20 cubes.
Step 4. Based on this algebraic rule, they attempted to
implement this for n = 100, proposing the operation:
2 + 4 + 6 + 8 + · · ·+ 200; however, they were unsuccessful
in calculating the operation or optimizing their technique.

θ1 : Based on the initial stages, they constructed an
algebraic rule for distant stages as follows:
an = 2 + 4 + 6 + · · ·+ 2n.
θ1 : They optimized the technique (F2) by setting the
cubes aside and focusing on the sum required to
determine the number of cubes in the second
combination.

The creative mathematical activity in this pair is manifested in their optimization of the technique
(F2). These students set the tangible material aside and used the data in the Table to construct
a technique and then implement it for the stages n = 4 and n = 100. Though this technique is
uneconomical due to the arithmetic calculations required to reach the result, it did solve the task.

Table 6 shows pair C’s technique and associated technologies.

Table 6. Pair C’s techniques and technologies related to Task 2.1.

Technique Technologies θm and θC

Step 1. Same as for pair A.
Step 2. They related the origami cubes in combination two
to the floors of a building, observing that ‘In stage 1 there
are 2 columns of 1 floor, in stage 2 there are 3 columns of 2
floors, in stage 3 there are 4 columns of 3 floors’.
Step 3. They determined that stage 4 of combination two
has 5 columns of 4 floors. Using this recursive rule, they
completed the row of combination two up to stage 100: 101
columns by 100 floors: 101× 100 = 10, 100.
Step 4. They noted that in the table (Figure 2) only 2 cubes
must be added to the total number of cubes in combination
two (Figure 4). They then calculated the sum that
corresponds to the total up to stage 100, which is 10, 100 + 2.
Step 5. Upon the instructor’s indication, they determined
another technique to solve the task by identifying that
‘squares’ are formed in combination two and calculating
their respective area; that is, for the first stage, a 1× 1
square, for the second, a 2× 2 square, and for the third, a
3× 3 square. They then proposed that to each calculation of
the product they needed to add 1 to the first term, 2 to the
second, and 3 to the third (Figure 5). They concluded that:
‘the number of the stage is multiplied twice, the new stage is
added, and then 2 from the other combination is added’.

θ1 : Based on the initial stages, they determined an
algebraic rule with two equivalent patterns of
construction:
an = n(n + 1) + 2
bn = n× n + n + 2.
θ1 : To optimize the technique, they generated a novel
technique using a known reference; namely, a
building to represent the cubes (F1, F2, F4).
θ2 : They produced two different techniques to
perform the same task (F3).
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Pair C manifested creative mathematical activity by optimizing a technique based on counting
and generating a novel technique; that consisted of determining the number of cubes by multiplying
the number of the stage by the number of the stage +1. This entailed relating and adapting the rows
of cubes to the floors of a building. This relation did not emerge from just their knowledge of math,
but involved aspects of real life (F1, F2, F4). These students adapted the decomposition technique
presented in Task 2.1 (based on identifying the stages of the sequence by separating the two colour
combinations) to deconstruct [43] each stage into three distinct organizations (Figure 5): a constant (2),
a square (n× n), and a line (n). This enabled them to propose a new technique to solve the task that
evidences the development of F1, F3 and F4.
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When pair C finished, the instructor asked them to explain their techniques to the group, and then
continue with Task 2.2, which involved constructing three figures of a sequence with the origami cubes
following a pattern similar to the previous ones. They were informed that other teams would have
to determine the number of cubes required to construct stage 100 of the sequences posited. Figure 6
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Figure 6. Construction with cubes by the MC students for Task 2.2.

Creative mathematical activity was observed when all the students proposed tasks of the
same type; that is, tasks that can be solved using techniques associated with the same technology.
The generalization rules that determine the nth stage of the constructions of cubes created by the
students were of two types: lineal and quadratic. For the first five sequences constructed, the pairs of
students found a rule of algebraic generalization associated with the nth term. Sequence F, which they
called “pyramids” (Figure 6), was presented at a first moment to one pair of students, but they were
unable to determine the rule of algebraic generalization, so the instructor presented the rule to all
the students at the end of the session so they were able to solve the task as a group. This task was:
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how many cubes are needed to construct stage 100 of the sequence of pyramids? Table 7 shows the
techniques and technologies that emerged from the group mathematical activity.

Table 7. Group techniques and technologies related to Task 2.2.

Technique Technologies θm and θC

Step 1. By manipulating the material, they determined that
a row of 3 cubes was added between the stage 1 and stage 2
pyramids, and that a row of 4 cubes was added between the
stage 2 and stage 3 pyramids (Figure 7).
Step 2. Next, they determined that a row of five cubes had
to be added below pyramid 4 and, similarly, a row of six
cubes had to be added below pyramid 5.
Step 3. They determined that calculating the number of
cubes of any pyramid of this sequence required totalling the
number of cubes of the previous pyramid and the stage + 1
(Figure 8). Using this rule, they constructed a list up to
stage n = 15.

θ1 : Based on the initial stages, they determined the
following recursive generalization:
an+1 = an + (n + 1).
θ1: They optimized the technique of counting into a
recursive technique (F2).
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The students’ creativity in this activity was observed when they optimized the counting technique
(F2). Beyond that, their positing of these constructions evidenced embryos of creative technologies
associated with their mathematical activity; namely, recognizing the characteristics of tasks of the
same type with their associated technology. Though no pair of students determined a rule of algebraic
generalization that corresponds to the stages of the sequence where the number of cubes of the nth stage
of the sequence of pyramids is defined by an = 1

2 n2 + 3
2 n + 1, it was suggested to keep thinking about

this task after the session. Member 2 of pair C constructed a table that included all the stages from
n = 1 to n = 100 based on the recursive rule, an+1 = an + (n + 1), which turned out to be very useful
for performing Task 4.1, as shown below. In general, the students’ experience with, and reflections on,
constructing the techniques for tasks 2.1 and 2.2 became a creative technological element that allows
the development of other techniques for this task and their adaptation to perform other types of tasks.

4.2. Problem Situation 4: Intersections and Regions

This situation, or a variant of it, has been used in other studies, especially programs of attention
to talent (for example, in ESTALMAT; see http://www.estalmat.org).

• Determine the number of regions into which a plane is divided by n non-parallel lines,
where an intersection can only be formed by two lines.

http://www.estalmat.org
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The technique required to solve this task entailed identifying the regions generated by the
intersections of a family of n non-parallel lines, where there is no common point in three different
lines. The tasks assigned involved determining the number of intersections and regions. To this end,
the students were initially given six pieces of pasteboard as in Figure 9.
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Figure 9. Evidence of the ostensive delivered to the students for situation 4.

The arrow in Figure 9 at a5 signals an intersection that is not visible, but that would appear if the
two-line segments were prolonged. While studying these cases, then, it was important to consider
the infinity property of lines on a plane so as to correctly count all the intersections and regions.
In addition to the tangible material, the instructor posed several questions designed to mobilize the
technological elements associated with the two tasks; that is, parallelism and non-parallelism between
lines, the infinity property of the lines and plane, the intersection of two lines, and the regions formed
by those intersections. Both the questions and the material functioned to remind the students to
consider, as well, the intersections that did not appear visually on the plane by prolonging the lines
to generate the first cases. In the first step of the technique, a rule was constructed to determine the
relation between the number of lines and regions generated. Figure 10 represents the first five cases.

Educ. Sci. 2020, 10, x FOR PEER REVIEW 12 of 21 

technological element that allows the development of other techniques for this task and their 
adaptation to perform other types of tasks.  

4.2. Problem Situation 4: Intersections and Regions 

This situation, or a variant of it, has been used in other studies, especially programs of attention 
to talent (for example, in ESTALMAT; see http://www.estalmat.org). 

• Determine the number of regions into which a plane is divided by  non-parallel lines, 
where an intersection can only be formed by two lines. 

The technique required to solve this task entailed identifying the regions generated by the 
intersections of a family of  non-parallel lines, where there is no common point in three different 
lines. The tasks assigned involved determining the number of intersections and regions. To this end, 
the students were initially given six pieces of pasteboard as in Figure 9. 

 

Figure 9. Evidence of the ostensive delivered to the students for situation 4. 

The arrow in Figure 9 at  signals an intersection that is not visible, but that would appear if 
the two-line segments were prolonged. While studying these cases, then, it was important to consider 
the infinity property of lines on a plane so as to correctly count all the intersections and regions. In 
addition to the tangible material, the instructor posed several questions designed to mobilize the 
technological elements associated with the two tasks; that is, parallelism and non-parallelism 
between lines, the infinity property of the lines and plane, the intersection of two lines, and the 
regions formed by those intersections. Both the questions and the material functioned to remind the 
students to consider, as well, the intersections that did not appear visually on the plane by prolonging 
the lines to generate the first cases. In the first step of the technique, a rule was constructed to 
determine the relation between the number of lines and regions generated. Figure 10 represents the 
first five cases. 

 
Figure 10. Construction of the five first cases of the intersections task. 

In a second step, studying the  case, students constructed the relation between the number 
of lines and regions generated when  lines were placed in accordance with the task conditions 
(Table 7). The third step consisted in verifying that the rule posited in step two functioned for  
lines. In this case, the students were able to prove that the rule functioned for any number of lines 
( . 

 

Figure 10. Construction of the five first cases of the intersections task.

In a second step, studying the nth case, students constructed the relation between the number
of lines and regions generated when n lines were placed in accordance with the task conditions
(Table 8). The third step consisted in verifying that the rule posited in step two functioned for n + 1
lines. In this case, the students were able to prove that the rule functioned for any number of lines
(n = 5, n = 20, n = 100).

Table 8. Construction of regions on the plane.

Lines a(n) Increase of Regions

1 2
2 4 +2
3 7 +3
4 11 +4
...

...
...

n 1 + n(n+1)
2

+n
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This problem situation included the following two tasks:

• Task 4.1: Determine the number of intersections formed on the plane when any number of
non-parallel lines are placed and only two lines can form an intersection.

• Task 4.2: Determine the number of regions formed on the plane when any number of non-parallel
lines are placed and only two lines can form an intersection.

As the session progressed, but before these tasks were presented, the instructor posed a series
of questions that included: How many regions are formed if 100 lines are placed but with only one
intersection? The aim of these questions was to mobilize the technological elements associated with
the two tasks; that is, parallelism and non-parallelism between lines, the infinity property of the line
and plane, the number of intersections between lines, and the regions formed by those intersections.
Here, this study discusses the techniques and technologies produced by pair A in relation to Task 4.1
(Table 9).

Table 9. Pair A’s techniques and technologies related to Task 4.1.

Technique Technologies θM and θC

Step 1. They used the tangible material to count the
intersections for the first 6 lines, but failed to consider the
non-visible intersections. The instructor pointed out this
error, which led to step 2.
Step 2. They made drawings of the lines on a blank sheet
(Figure 11) to count all the intersections more systematically.
This allowed them to count all the intersections formed by
drawing seven lines.
Step 3. They constructed a recursive process for the first 8
lines: 6 lines generate 15 intersections (10 + 5); 7 lines
produce 21 lines (15 + 6). Hence, 8 lines should give
21 + 7 = 28 intersections. They verified the number of
intersections by following the conditions on the list
(Figure 11) and then used this technique to reach 20 lines.
Step 4. They made several attempts to find a rule based on
the relation between the number of lines and the number of
intersections of the stage n = 20, and tested their proposed
rules with the information for stage 4, but did not succeed
in establishing an algebraic rule.

θ1 : Taking the first 6 stages as the base, they
considered a relation of dependence between an and
an+1, and, later, the recursive rule:
an = an−1 + (n− 1).
θ1 : They optimized their technique by passing from
the drawings to constructing a recursive rule (F2).
θ2 : They attempted to optimize their recursive
technique and find a rule of algebraic generalization
(F2). They also applied the verification technique
presented previously (F4).
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In contrast to the previous task, this case requires a construction based on a process of exploring
the first stages that define the relation between the number of intersections (ai) and lines (i). For this
reason, the students changed the technique of using the material to one based on “drawing lines”.
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This allowed them to count all the intersections (F3). Creative mathematical activity also appeared
when they proposed a recursive process to determine the number of lines, thus optimizing their
technique (F1, F2). Upon contrasting step 5 of Task 2.1 with step 4 of this one, this study observed that
the students adapted the technique (F4) when they proposed diverse rules of algebraic generalization,
and when they verified those rules for close and distant stages in the sequence.

Table 10 displays the creative mathematical activity based on pair B’s techniques and technologies
with Task 4.1.

Table 10. Pair B’s techniques and technologies related to Task 4.1.

Technique Technologies θm and θC

Step 1. Using the tangible material, they counted the number of
intersections for the first 5 stages, including the intersections that
do not appear visually (Figure 5).
Step 2. They constructed a recursive process for the first 8 lines
based on the differences between stages an and an+1; that is: with 2
lines, one intersection; with 3 lines, 1 + 2 = 3 intersections; with 4
lines, 3 + 3 = 6 intersections; with 5 lines, 6 + 4 = 10 intersections;
and with 6 lines 10 + 5 = 15 intersections; so with 7 lines the
number of intersections will be the same as with 6 lines plus 6:
15 + 6 = 21 intersections, and with 8 lines the number will be the
same as with 7 lines plus 7: 21 + 7 = 28 intersections (Figure 12).
Step 3. They identified that the technique associated with the
pyramid task (Figure 4) can be applied to solve the intersection
task, as well, though they recalled that the earlier task was not
solved.
Step 4. They determined which task is solved by adding up
consecutive positive whole numbers, such that
a100 = 1 + 2 + 3 + · · ·+ 99.
Step 5. They related a famous technique from Carl Friedrich
Gauss (Hayes, 2006) to add up the first consecutive positive
numbers (Figure 13) that the instructor had mentioned briefly in
the first session.
Step 6. They determined the value of the sum 1 + 2 + 3 + · · ·+ 99,
by forming pairs between the 10 initial and 10 final numbers, as
shown here:
1 + 99 = 100; 2 + 98 = 100; 3 + 97 = 100; 4 + 96 = 100; 5 + 95 =
100; 6 + 94 = 100; 7 + 93 = 100; 8 + 92 = 100; 9 + 91 =
100; 10 + 90 = 100; until they obtained 100× 10 = 1000.
Finally, they stated that this process must be repeated up to the
number 50, but that this technique is not effective for any number
of lines stipulated, so they continued trying to come up with an
algebraic rule.
Step 7. The instructor asked them to perform the same activity,
but with 20 lines. This led to the following conclusion: taking
away one (leaving 19), dividing by two (leaving 9.5), taking only
the 9 (the whole part) and multiplying 9× 20 (making 180) plus
the one in the half, leaves 190 intersections.
Step 8: They verified this technique with one member’s results for
20 lines and then implemented it for 100 lines: 99/2 = 49.5, taking
49, multiplying it by 100, and adding 50 from the half to obtain the
result of 4,950 intersections.

θ1 : Based on the first 5 cases, they considered a
relation of dependence between an and an+1 that
led to the recursive rule:
an = an−1 + (n− 1).
θ2 : They constructed two rules of algebraic
generalization for n lines:
an = 1 + 2 + · · ·+ (n− 1)
an = [(n− 1)/2] × (n) + 1

2 n.
θ1 : They optimized their technique by passing
from the tangible material to a recursive rule.
θ2 : They recognized the applicability of a
technique based on considering three types of
tasks: the intersection task, the pyramid task, and
the task of the sum of the first 100 positive whole
numbers (F3, F4).
θ3 : They adapted Gauss’ technique for the first 10
whole positive numbers for the sum of the first 99
numbers (F4).
θ4 : They optimized the technique of adding pairs
and constructed a rule of algebraic generalization
(F2).
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The development of creativity in this task became apparent when the students identified that the
three different tasks, approached in three sessions, could be solved using the same technique (F3, F4).
Unlike the case of the technique applied on the previous task (Table 5), on this one, they produced
three types of generalizations—one recursive, two algebraic—that solved it (F1, F3), then chose the
“optimal” one as a function of the arithmetical calculations required to solve it (F2).

Table 11 presents pair C’s creative mathematical activity on Task 4.1.

Table 11. Pair C’s techniques and technologies related to Task 4.1.

Technique Technologies θm and θC

Step 1. Using the tangible material, they counted the number of
intersections for the first 6 lines, after arranging them so that all
intersections were visible.
Step 2. Same as pair B, but followed this rule up to 18 lines.
Based on this step, they proposed their own techniques, which
were discussed at a couple different moments.
Step 3. (Member 1). With the goal of detecting a pattern that
would allow her/him to construct an algebraic rule, he continued
to apply this recursive rule up to 55 lines (Figure 14).
Step 3. (Member 2). This student related the technique associated
with the pyramid cube task (Figure 4), realizing that it could be
used to solve the intersection task. This student showed the
instructor a sheet where –on his own initiative– he had resolved
the pyramid cube task using the recursive rule
an+1 = an + (n + 1) one-by-one up to n = 100. He mentioned that
the numbers are the same, but ‘go two behind’; that is, ‘If the
number of lines here is five, there it would be pyramid 3’. Though
this student recognized that this new task is solved using pyramid
98, he continued to search for a more direct way.
Step 4. (Member 1). Once this student had a sufficient number of
cases (55 lines), he identified a pattern based on ‘tens’ (10, 20, 30,
40 . . . ). He explained the process on the blackboard (Figure 15):
‘The way in which it is possible to reach 45 is by multiplying 10 ×
5—the half– and subtracting 5 to reach 45. I made it to 50 this way,
one-by-one and verified it [algebraic rule] for 20, 30 and 40, and it
worked; for example, for 20 I obtained 190, because it’s 20 × 10,
which is half of 20 minus 10, and that gives 190. I did the same
with 30, 40 . . . up to 100. What I did was 100 × 50 minus 50, which
is half. That gave me 4950”.

θ1 : Based on the first 6 cases, they structured a
relation of dependence between an and an+1, and
later constructed the recursive rule:
an = an−1 + (n− 1).
θ2 : They constructed a rule of algebraic
generalization to find the number of intersections
of n lines:
an = n

(
n
2

)
−

n
2 .

θ1 : They optimized their technique by passing
from the tangible material to a recursive rule (F2).
θ2 : Member 2 recognized the applicability of a
technique with respect to two task types: pyramid
cubes and line intersections. He identified the
similarities and differences between the tasks in
order to implement the technique (F3, F4).
θ3 : Member 1 optimized his recursive technique
and produced a unique technique based on ‘tens’.
He verified that this new technique worked for
other cases (F1, F2).
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As with pair B, member 2 of pair C evidenced his creative mathematical activity by identifying the
similarities between the pyramid task with and the intersection task. In addition to identifying these
regularities, he recognized the differences in the initial stage of each task and how they would need to
be implemented in the new one (F3, F4). The creative mathematical activity was clear in member 1 of
pair C when he proposed a peripheral task that economized his technique. Based on the stages in the
table (Figure 14), this student focused on multiples of 10 to relate the number of lines with the number
of intersections (Figure 14). This evidenced functions F1, F2, F3 and F4.

The series of tasks proposed in this investigation is well-known and has been utilized in early
(even pre-algebra) algebra; that is, a sector of the field that is addressed during the transition from
arithmetic to Algebra per se. This has often been related to the generalization process [41–44].

5. Discussion

Most of the studies or models that set out to analyse mathematical talent and its association with
creativity [13,46] tend to centre their gaze on mathematical abilities, types of problems, topics in math,
or the mathematical theory that stimulates students’ potential. Our PMMT model, in contrast, takes all
these elements into account (task type, techniques produced by students, and the mathematical, θm,
and creative, θC, technologies that come into play), together with their interrelations during the creative
mathematical activity. It then characterizes this activity on the basis of the creative technological
functions that emerge as protagonists during the analysis of results.

The infinite successions tasks presented herein facilitated the production of diverse techniques for
finding recursive generalization and algebraic rules while performing the same task (F3). This approach
can thus be compared to flexible thinking (number of focuses of a solution) in the sense elucidated by
Kattou, Kontoyianni, Pitta-Pantazi and Christou [8]. The case of pair C revealed creative technologies
from the first session (F1, F2, F3, F4), but it was the global analysis that generated evidence of the
development of their creativity and of how the other functions became clearer. However, confronting
one sole task, as in the context of this investigation, does not allow the authors to “characterize the
flexibility” of all the students, as illustrated by the creative mathematical activity reported for pairs A
and B, who began developing creativity during the second task, but did not provide clear indications
of this until Task 4.1. Thus, presenting a series of tasks of the same type (not identical, but ones that
share the same technology), is what made it possible to clearly evidence the systematic development of
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creativity and, in this study specifically, the way in which most of the students constructed recursive
generalization and algebraic rules by recognizing, modifying, adapting, and applying the same
technique to several different tasks. In this sense, proposing a local praxeology based on various tasks
of the same type associated with the same technology allowed those techniques to be optimized or
adapted to other conditions; for example, the techniques that pairs B and C produced on the pyramid
task were implemented to generate the technique for Task 4.1 of the intersections task.

The conditions of proposing a local praxeology—tasks of the same type—aligns with the condition
of proposing “challenging” tasks, as has been defined in other research on mathematical talent and
creativity [4,14,17–19]. In particular, our work revealed that these MC students developed mathematical
creativity through the implementation of a didactic design that emphasized task type, T: “determine
the nth stage of an infinite succession” and, on that basis, developed talent by means of a mathematical
activity based on generalization.

In addition, this study observed that certain steps of the technique produced by the students
were key to developing mathematical technologies. The study of the first three stages (step one of the
technique), for example, made it possible to generate a technological element; search for the pattern
associated with the general rule (stage two of the technique). This was evidenced specifically by
pair C’s activity, as they recognized that determining any stage of the sequence using a recursive
rule is an uneconomical technique, though it allowed them to find a pattern and an algebraic rule
that generated any stage of the sequence. In particular, member 1 of pair C showed an embryo of a
mathematical technology that led him to elaborate a list with a considerable number of stages that was
not limited by a dependency between an and an+1 but, rather, by choosing the specific stages (a10, a20,
a30, . . . ) that were determinant in optimizing the technique. This reveals a general vision of recurrence
that, for this student, seemed to occupy a “first level” of generalization; one that he then applied to
construct a rule of algebraic generalization to solve the task. A similar situation occurred with member
2 of pair C, who constructed a table containing a set of a data that, once analysed, allowed him to solve
the pyramid task for the first 100 stages. This student established a direct relation between the pyramid
and intersections tasks, pointing out that: “it goes two behind”. Though this student found a100 and
recognized that this new task can be solved with a98, the technique was guided by the objective of the
task; that is, determine any stage of the sequence. Hence, the implicit non-dependence task with the
previous stage (an → an+1) on Task 2.1 was very clear for these two students.

One advantage of using this model, together with generalization as the mathematical component
(θm), is the flexibility it allows regarding the objectives of each task; that is, the students have the
possibility to propose preliminary conclusions for tasks—e.g., “obtaining a recursive rule”—although
they do not succeed in constructing an algebraic rule. Moreover, this model allows them to produce
diverse techniques for the same task (F3), either on their own initiative or following an instructor’s cue;
thus promoting creative mathematical activity. This advantage is determinant in the setting of the
“regular classroom”, where the characteristics of the students are more diverse than in the MC.

The conditions established for the MC included an institutional setting in which the students
worked in an environment propitious for generating creative mathematical activity, and where the roles
assigned to the instructor and parents enhanced the conditions in which the didactic design—based
on a local praxeology—was implemented. In addition to ensuring the regular participation of their
children, the parents participated actively in the MC in the first and last sessions. As Bicknell [47] and
Feldhusen [48] proposed, the parents’ participation is an important element in developing mathematical
talent. It is important to emphasize that the instructor’s participation in every situation included in the
didactic design was fundamental as well, as illustrated by the selection of the sub-task that entailed
determining the number of intersections for 20 lines that the instructor proposed to pair B. This allowed
those students to recognize that the clearly-stated pattern for the first ten numbers was easily verified
for the 20-line case, and so could be generalized to 100 lines. Without doubt, planning these sessions
entailed great complexity, for the activities proposed in the didactic design could be performed using
diverse techniques and entailed generating proposals for “sub-tasks” that allowed the students to
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approach the task situations presented. This leads the authors to recommend elaborating a guide
for instructors. In this regard, it is sustained that elaborating a guide for teachers—even holding
workshops to professionalize teaching—is necessary for the implementation of such a didactic design.
This paper could provide a basis for producing both.

6. Conclusions and Future Research

One consequence of this theoretical proposal is that it considers the students in relation to a certain
institution through a didactic focus that, instead of emphasizing individual characteristics, analyses
how praxeological equipment is provided to develop mathematical talent; specifically, by generating
proposals for activities that allow students to construct and reconstruct creative, local-level mathematical
praxeologies. This report highlights the solidity of the didactic design for developing the mathematical
talent of all the students involved. For example, the students who performed all the tasks successfully
(pair C) from situation 2 onwards adapted their techniques to new tasks (F4) and proposed diverse
techniques for solving the same task (F3). The students who did not succeed in solving the tasks in
situation 2 (pair A) did, however, demonstrate creative mathematical activity in later sessions of the
MC, as is clearly evidenced in situation 4.

One of the postulates of this proposal is that creativity is an important element of talent,
so developing and analysing it is a fundamental principle for potentiating and observing the evolution
of mathematical talent. As a result, the foundation of the PMMT model is creative mathematical
activity developed through a solid didactic design in a propitious institutional context. As this
creative activity is a necessary, but insufficient, element for realizing the development of mathematical
talent, additional elements must be incorporated into the model; for example, considering students’
attitudes. This leads to the emergence of another key question for research: How can the PMMT
theoretical model be enriched so as to take into account the relations among these additional elements,
creative mathematical activity, and the development of mathematical talent?

The didactic design conceived, implemented, and analysed herein constitutes an example of the
experimental validation of the PMMT model that, together with the theoretical validation provided by
the ATD [49], demonstrates the importance of the model for designing studies of creative mathematical
activity, together with its impact on the development of mathematical talent. Nonetheless, it is
necessary to implement this model in the context of regular classrooms and/or with various types
of tasks.

The PMMT model can be implemented in regular classrooms, but this requires reorganizing
study programs to reflect flexible didactic designs based on local mathematical praxeologies.
This process demands arduous labors by math teachers due to current institutional conditions
(curricular rigidity, evaluation centered on handling algorithms, teaching based on presenting concepts,
and administrative obligations, among others), and requires considering students as producers of
knowledge. Clearly, this is extremely complex.
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